Novel Reactions of 5-Cyano-1,3-dimethyluracil. A Simple Synthesis of Pyrido[2,3-d]pyrimidines (1)

Tsann-Long Su and Kyoichi A. Watanabe*

Laboratory of Organic Chemistry, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center,
Sloan-Kettering Division of Graduate School of Medical Sciences,
Cornell University, New York, NY 10021
Received July 6, 1982

A reaction of 5-cyano-1,3-dimethyluracil (1, R = CN) with acetone in base afforded 1,3,7-trimethylpyrido-[2,3-d]pyrimidine-2,4(1H,3H)-dione (9a) in a moderate yield. From a reaction mixture of 1 (R = CN) with butanone, 1,3,6,7-tetramethyl- and 7-ethyl-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (9b and 9c, respectively) were isolated in low yields. When ethyl cyanoacetate or malononitrile was used in place of the ketone in the above reaction, 7-amino-6-ethoxycarbonyl- and 7-amino-6-cyano-1,3-dimethylpyrido[2,3-d]-pyrimidine-2,4(1H,3H)-dione (14a and 14b, respectively) were obtained in quantitative yields. A plausible mechanism for the formation of bicyclic compounds is discussed.

J. Heterocyclic Chem., 19, 1261 (1982).

Previously, we reported some novel ring transformation reactions in which the urea portion of 1,3-dimethyluracil derivative 1 is displaced by the N-C-N, C-C-N or C-C-C fragment of 1,3-ambident nucleophiles (X-Y-Z) leading to new pyrimidine (2), pyridine (3), or benzene (4) systems 4 via a Michael adduct 2 and an open-chain 3 intermediate. For the pyrimidine to benzene ring transformation using a ketone as the 1,3-ambident nucleophile, activation of the pyrimidine ring by introduction of an electron-withdrawing group (e.g., NO₂) on C-5 is necessary.

Investigation of 5-cyano-1,3-dimethyluracil (1, R = CN)was of interest since, as in the nitro derivative 1 (R = NO₂), the 6 position is highly activated and would be susceptible to attack by even a soft nucleophile such as a ketone to form a Michael adduct 5 which might also undergo ring transformation to form a 2,4-dihydroxybenzonitrile 7 via an open-chain intermediate 6. However, such was not the case. When 1 (R = CN) was treated with acetone in sodium ethoxide/ethanol, two products were obtained, one of which (12% yield) was identical with 1,3-dimethyluracil-5-carboxamide (8) (5) which arose from hydrolysis of the nitrile in 1. The second product (18% yield) was identical with 1,3,7-trimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (9a) (6). Apparently, the Michael adduct 5 was converted into the open-chain intermediate 6 which underwent cyclization by a mechanism involving attack by the terminal urea nitrogen on the cyano group to afford the 6-aminouracil intermediate 10. Intramolecular condensation of the amino group with the neighboring ketone would furnish the formation of 9.

Treatment of 1 (R = CN) with butanone in base afforded two products, 1,3,6,7-tetramethyl- and 7-ethyl-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (9b, and 9c in 2% and 21% yield, respectively), in addition to 8 (9% yield). The structures of the bicyclic products were established by pmr spectroscopy: [For 9b (deuteriochloroform): δ 2.34 (3H, s, CMe), 2.56 (3H, s, CMe), 3.47 (3H, s, NMe), 3.71 (3H, s, NMe) and 8.13 (1H, s, H-5); signals at δ 2.34 and 8.13 were slightly broadened due to allylic coupling; for 9c (deuteriochloroform): δ 1.35 (3H, t, CH₂Me), 2.89 (2H, q, CH₂Me), 3.40 (3H, s, NMe), 3.73 (3H, s, NMe), 7.06 (1H, d, H-6, J_{5.6} = 7.9 Hz), 8.31 (1H, d, H-5, J_{5.6} = 7.9 Hz).

The mechanism proposed for the formation of 9 from 1 (R = CN) suggests that an activated acetonitrile, such as malononitrile or ethyl cyanoacetate, should form more readily the Michael adduct 11 since it is a better nucleophile than a ketone. The Michael adduct 11 should be converted more readily into the open-chain intermediate 12 since the α -proton of 11 is more acidic than that in 5. Cyclization to the 6-aminouracil intermediate 13 and subsequent formation of the bicyclic product 14 should also occur readily. Actually, these expectations were confirmed by treatment of 1 (R = CN) with these reagents which afforded 7-amino-6-cyano-1,3-dimethylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (14a), mp 352-353° [lit (7) mp 354°] and 7-amino-6-ethoxycarbonyl-1,3-dimethylpyrido-[2,3-d]pyrimidine-2,4(1H,3H)-dione (14b), mp 213-214°; [pmr (deuteriochloroform): δ 1.40 (3H, t, CH₂Me), 3.43 (3H, s, NMe), 3.60 (3H, s, NMe), 4.36 (2H, q, CH₂Me), 5.71 (1H, broad s, NH), 8.27 (1H, broad s, NH), 8.87 (1H, s, H-5)], respectively, in quantitative yield.

The procedure described herein should have wide applicability in the synthesis of a number of pyrido[2,3-d]-pyrimidines.

Acknowledgement.

We are indebted to Dr. Jack J. Fox for his continued interest.

REFERENCES AND NOTES

- (1) This investigation was supported by funds from the National Cancer Institute, D.H.H.S. (Grants CA-08745 and 18601). All new compounds were analyzed for C, H, N, and analytical results were within $\pm 0.4\%$ of the theoretical values.
 - (2) K. Hirota, K. A. Watanabe and J. J. Fox, J. Heterocyclic Chem.,

14, 537 (1977); Idem., J. Org. Chem., 43, 1193 (1978).

- (3) K. Hirota, Y. Kitade, S. Senda, M. J. Halat, K. A. Watanabe and J. J. Fox, J. Am. Chem. Soc., 101, 4423 (1979); Idem., J. Org. Chem., 46, 846 (1981).
- (4) T.-L. Su, K. A. Watanabe and J. J. Fox, Tetrahedron, 38, 1405 (1982).
 - (5) W. Liebenow and H. Liedtke, Chem. Ber., 105, 2095 (1972).
 - (6) S. Wawzonek, J. Org. Chem., 41, 3149 (1976).
- (7) H. Bredereck, G. Simchen, R. Wahl and F. Effenberger, *Chem. Ber.*, **101**, 512 (1968).